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About This Report 

This is the second part of a three-part exploration of flexible hardware-enabled guarantees 
(flexHEGs), commissioned by ARIA. This document can serve as a stand-alone discussion of 
flexHEGs for technical audiences. Readers who are interested in additional discussion of the 
motivation of the proposal should read Part I, and readers who are interested in uses of 
flexHEG for international treaties about AI development should read Part III.  
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Introduction 

Frontier AI models could pose serious risks to public safety and international security [1]. 
Because of these potential risks, it may soon be important for frontier AI developers to be able to 
make credible guarantees about what AI development they are or are not doing. It would be 
very useful if AI developers could provide these guarantees without having to reveal 
proprietary information about how their models are developed. 
 
Frontier AI development depends heavily on specialized hardware - particularly AI accelerators 
running in massive data centers. These accelerators are a natural node for structuring 
guarantees about AI development, as a large number of accelerators are needed and their 
supply chain is highly concentrated [2]. In some contexts, such as domestic regulation, usage of 
these accelerators could be verified by trusted intermediaries like cloud providers [3]. However, 
for international agreements about AI development, there may be no entity that all parties 
would trust with such deep visibility into their AI programs. 

To address this challenge, we propose Flexible Hardware-Enabled Guarantees (flexHEG) - a 
system that uses open source and privacy-preserving hardware to enable AI developers to make 
verifiable claims about their compute usage. The system would be: 
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●​ Privacy-preserving: Developers could verify compliance with guarantees without 
revealing sensitive details about their work. 

●​ Flexible: The verification capabilities could be updated over time as technology and 
governance needs evolve. 

●​ Trustworthy: The system would be open source and auditable to provide confidence that 
it does not contain backdoors. 

●​ Secure: Physical and cryptographic protections would prevent circumvention of the 
guarantees. 

FlexHEG is composed of two main components: an auditable Guarantee Processor that 
monitors accelerator usage and verifies compliance with specified rules, and a Secure Enclosure 
that protects against physical tampering. Because both AI technology and governance needs are 
rapidly evolving, the system is designed to flexibly support many types of guarantees through 
updateable verification capabilities. The Guarantee Processor could be configured to only accept 
updates approved by appropriate stakeholders - the implications of this for international 
governance are analyzed in Part III of this report series. 
 
For verification use cases, it is sufficient for the flexHEG Secure Enclosure to be tamper-evident, 
ensuring that tampering with a large number of devices could not go undetected. For use cases 
that require guarantees about future accelerator usage, the secure enclosure should also be able 
to trigger a tamper response that permanently disables the accelerator before an attacker can 
circumvent the guarantee logic or extract secret keys. 
 
This report explores the technical options for implementing flexHEG, with a focus on 
approaches that could be deployed relatively quickly. First, we establish concrete design 
requirements, arguing that it should be auditable, highly secure, and deployable by 2027 to be 
most useful for emerging AI governance needs (FlexHEG Design Goals). We then review 
modern AI data centers and AI development workflows that flexHEG must integrate with 
(Background on Frontier AI Development). 
 
Next, we evaluate different strategies for modifying AI accelerators, from software changes to 
custom hardware (Potential Accelerator Modifications). We then analyze specific design choices 
for the two main components - the Guarantee Processor and Secure Enclosure - discussing 
tradeoffs between security and deployment speed (Hardware Components). 
 
For more robust guarantees, we propose a specific flexHEG architecture that gives the 
Guarantee Processor direct access to the accelerator's data path (Interlock-Based Design). This 
"Interlock" design enables robust verification without requiring trust in the accelerator's internal 
operation. Modifying the accelerator's Network Interface Controller (NIC) is a promising 
strategy for implementing this design that may be achievable by third parties.  
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Next, we describe concrete approaches to implementing guarantees, from basic auditing to 
sophisticated automated verification (General-Purpose Guarantees). A detailed example of 
verifiable FLOP counting for multi-accelerator training demonstrates how these mechanisms 
could work in practice.  
 
Finally, we outline a roadmap that a major third-party R&D effort could take to develop 
flexHEG (Future Work). This development could be sped up and directly integrated into 
existing accelerators with the help of accelerator manufacturers. 
 

FlexHEG Design Goals 

To provide the capabilities required for the use cases discussed in Part I and Part III of this 
report series, a full flexHEG system has the following properties (although systems that meet 
only some of the high-level goals are also useful in more specific contexts) :  
 

●​ Enables AI developers to make guarantees about past and future workloads performed 
by their accelerators 

●​ Is secure against attempts to circumvent guarantees  
●​ Flexibly allows guarantees to be updated if authorized by the appropriate parties 
●​ Is trusted not to contain backdoors  
●​ Integration doesn’t significantly burden model developers 
●​ Can be deployed by 2027 to be included in major data center build outs  

 
To ensure that a given future flexHEG implementation meets these high-level goals, we specify 
several lower-level requirements, which are summarized in Table 1 and motivated below. The 
table entry indices are referenced with brackets throughout the text in this section. 
 

4 

http://flexheg.com/report-1
http://flexheg.com/report-3
http://flexheg.com/report-1
https://docs.google.com/document/d/1O5hvpywOLbIwSTp9CmSPdVA7bWUGDTZf2Y0fM0xNZL4/edit?tab=t.0


Flexible Hardware-Enabled Guarantees | Part I | Part II | Part III 
 

 
       Table 1: FlexHEG design goals, separated by category.  
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Enables AI developers to make guarantees about past and future workloads performed by 
their accelerators 
 
The system is able to execute general purpose logic (1) so that it can flexibly perform a variety of 
guarantees. The flexHEG system has access to accelerator workload data (2) so that it has the 
necessary information to check guarantees; and accurate timekeeping (3) so that it can support 
time-based guarantees. The flexHEG system can enable control of accelerator usage (4) so that it 
can nondestructively enforce that guarantees are adhered to, which is necessary so that a 
developer can credibly make guarantees about future usage of accelerators. Guarantees can be 
checked in an automated way (5) so that guarantee checks can be performed in a sufficiently 
short time, and model details do not need to be shared with auditors (i.e. a hardware-backed 
zero-knowledge proof). 
 
Is secure against attempts to circumvent guarantees or exfiltrate data 
 
The flexHEG system is secure against non-invasive attacks (6) so that guarantees cannot be 
circumvented with scalable attacks. The system is resistant against invasive attacks (7), with 
either tamper evidence to disincentivize covert adversaries, or a tamper responsive enclosure 
that can trigger permanent accelerator disablement to disincentivize overt adversaries. Defense 
against overt adversaries is required so that guarantees about future usage are a credible 
commitment that cannot be skipped later by physically disabling the guarantee system. A more 
detailed exploration of the type of attacks we hope to defend against is provided in Appendix 
A: Threat Models. 
 
Communication between flexHEG systems is confidential and authenticated (8) to prevent 
network snooping being used to circumvent guarantees about how data is shared, and so that 
multiple flexHEG systems can coordinate around guarantees which pertain to many-accelerator 
workloads. Additionally, accelerator and flexHEG data at rest can be stored in a confidential 
way (9) so that guarantees cannot be circumvented by an adversary obtaining data with e.g. 
scanning equipment, and claims from a flexHEG system cannot be falsified using a stolen key. 
 
Allows guarantees to be updated if authorized by the appropriate parties 
 
FlexHEG guarantees and the logic to check them can be updated if and only if the update has 
been authorized by a sufficient number of pre-specified stakeholders (10). Different types of 
updates could require approval from different stakeholders, and could depend on other 
conditions being met. Updates could potentially modify the rules for accepting future updates. 
 
 
Is trusted not to contain backdoors 
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FlexHEG must be trusted to not contain backdoors for secret surveillance or control (11), or 
intentional security flaws (12) that would allow insiders to circumvent guarantees. Additionally, 
it is possible for third parties to verify that the flexHEG system is operating as expected (13).  
 
Integration doesn’t significantly1 burden model developers 
 
Integration of flexHEG capabilities should not create significant burdens for AI developers. The 
addition of flexHEG hardware should not significantly increase the total datacenter cost (14). 
Additional power consumption should be minimal (15). The system is ideally compatible with 
both air and liquid cooling solutions without significantly increasing the thermal resistance (16). 
The flexHEG form factor should fit within common server configurations and maintain 
compatibility with existing interconnects (17). Interconnect latency and throughput should not 
be significantly impacted for relevant workloads (18). False positives in tamper detection or 
guarantee checks should be rare (19) to avoid disruptions. Accelerator reliability should not be 
substantially reduced (20), either by allowing regular maintenance, or by modifying 
configurations to tolerate partial hardware failure. Demonstrating compliance with guarantees 
should not be overly time consuming (21). Finally, flexHEG should not significantly impede 
development or debugging workflows (22). 
 
Can be deployed by 2027 to be included in major data center build outs  
 
Massive data center build outs are planned between 2025-2030 [4], [5], and AI development past 
2030 may occur on the same hardware and infrastructure, even if transformative AI is several 
years later. In order to reach its full potential, flexHEG systems will likely need to be deployed 
at scale by 2027 or sooner (23). Additionally flexHEG should be compatible with the different 
types of accelerators (24) that are used by frontier AI developers, ideally on short notice (25) for 
cases where countries were not able to collaborate years in advance of a treaty.  
 

Potential Accelerator Modifications 

In this section, we discuss four ways that AI accelerators could be modified to meet the flexHEG 
design goals, with tradeoffs between security, time to readiness, and sophistication of 
guarantees. For more background on frontier AI workloads and the data center hardware they 
run on, refer to Appendix A for a brief summary.  
  
Accelerators could be modified to include flexHEG capabilities using integrated flexHEG 
components, retrofitted flexHEG components, firmware modifications, or software 
modifications. Including flexHEG directly in the accelerator die or PCB would provide the 

1 What counts as a “significant” burden depends on the context, but as a rough guess this might be a 1-2% 
percent increase in cost in typical scenarios, 5% if needed to satisfy regulations, and 20% if there is 
high-level buy-in.  
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greatest design flexibility but would take the longest to deploy. To speed up deployment, 
flexHEG components could be separately manufactured and retrofitted to existing accelerators. 
Finally, firmware and software changes are the fastest to deploy, but rely on the limited 
hardware security that is already on devices. The advantages and disadvantages of these 
options are discussed below. 

Hardware Modifications (Integrated) 

Specialized flexHEG hardware could be integrated directly into the accelerator PCB or main 
chip, which would provide the best security and data access. If the Guarantee Processor is on 
the main chip, it would be much more difficult for attackers to modify signals that stay within 
the chip. Additionally, supply chain attacks that divert a fraction of components before adding a 
Guarantee Processor would be more difficult to execute (because the Guarantee Processor 
would be on the same mask). A purpose-built Guarantee Processor could be designed to 
prioritize security and auditability, as discussed in the Guarantee Processor section.  
 
The Secure Enclosure could also be added at the chip level, which may improve security by 
reducing the size of the  attack surface (however, it may still be important to also have a larger 
secure enclosure that prevents direct access of tools to the chip surface). 
 
If flexHEG hardware were deeply integrated throughout an accelerator, it may be more difficult 
for an attacker to physically disable it. However, deep integration would make external audits 
challenging and reduce portability to other accelerator types. A potential solution is to have 
dedicated blocks within the hardware for the Guarantee Processor that can be open sourced for 
external audits. 
 
There are three operational downsides to integrated hardware changes: 

●​ They require significant assistance from the accelerator manufacturer, which could cause 
challenges due to, among others, proprietary IP. 

●​ They likely require years of preparation to add to each type of accelerator (among others 
due to multi-year-long manufacturing cycles). 

●​ They cannot be added to existing accelerators, which is a downside both for the absolute 
year they could be available, and for last-minute integration into novel accelerator types. 

 
The lag time for hardware- integrated flexHEG depends on the time for it to be designed and 
manufactured, and the time for older compute to be displaced. An investigation by Epoch AI, a 
research institute focused on analyzing key trends in AI, suggests that, counting from the time a 
new hardware generation is launched, it would take 2.7 - 3.9 years for the old accelerator 
generation to no longer be useful for frontier development (see Figure 2) [6]. If the current trend 
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for deployed compute slowed2, this estimate would increase (because it would take longer for 
prior compute to be displaced).  Additionally, as a rough estimate3 it might take 1-4 years to add 
changes to all leading accelerator designs. Overall, this estimate predicts 3.7 - 7.9 years for 
flexHEG with integrated hardware to displace non-flexHEG accelerators in frontier AI 
development (starting when the accelerator manufacturer begins actively working on it).  

 
Figure 2: Installed NVIDIA computing power by accelerator generation over time. Source: 
Epoch AI [6]. 

Hardware Modifications (Retrofitted) 

If the modifications can instead be retrofitted to existing accelerators, the time to deployment 
and reliance on accelerator designers can be reduced. Retrofittability may be especially 
important if flexHEG needs to be quickly added to accelerators used by countries that are not 
allowed to purchase the newest generation of NVIDIA chips. Because retrofitted hardware is 
added after manufacturing, additional supply chain security may be needed. Compared to 
integrated hardware, retrofittable hardware may be easier for an attacker to decouple from the 
accelerator. This can potentially be defended against with a retrofittable Secure Enclosure, which 
is discussed in more detail in Secure Enclosure.  

3 Nvidia does not publicize their engineering design timelines, but some sources say major architectural 
modifications take 3 years from design to rollout. 

2  It's unclear whether this exponential growth in compute will continue past 2030 because it would start 
to reach a significant fraction of electricity production [7] (and predictions for AI trajectories more than 
five years in the future are difficult to make confidently). 
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One option to retrofit a Guarantee Processor is to add it as an additional component that can 
make external measurements, as done with the power-measurement prototype. To get 
additional data access, the Guarantee Processor could potentially be plugged into an open PCIe 
slot (for example, NVL72 trays have 8 slots for PCIe drives, which may not all be used [8]). 
Nvidia supports third party direct memory access to HBM [9], so a third-party device could 
potentially be set up to read from HBM4.  
 
Similarly, an existing retrofittable component on the accelerator could be replaced with a 
flexHEG version. For example the Network Interface Controller, or Hardware Management 
Controller (also called BMC) could be replaced to function as the Guarantee processor, as 
discussed in Guarantee Processor. 

Firmware Modifications 

Firmware is code that runs on computing devices and is generally responsible for lower-level 
device functioning. Several components within an accelerator will typically have their own 
firmware. A security advantage of firmware over software is that devices that have Secure Boot 
[10] can only run firmware that has been cryptographically signed by the manufacturer (as 
opposed to software, which can be easily modified or replaced). Devices that also have Rollback 
Protection [10] can only run firmware binaries that have a version number that is greater than a 
value stored in secure memory. Additionally, because firmware can run directly on the AI chip, 
it has the same security benefit as integrated hardware that signals are more difficult to tamper 
with.  
 
There are several components on existing accelerators that could potentially be reprogrammed 
with a firmware update to support flexHEG logic. Components used for compute, networking, 
and memory could potentially be repurposed, with different tradeoffs between feasibility, 
security, and the types of guarantees that could be supported. These options are discussed in 
more detail in the Guarantee Processor section. One downside is that it may be more difficult 
(compared to using a dedicated Guarantee Processor) for auditors to verify that firmware on a 
proprietary chip is functioning as intended.  
 
As a relatively simple example, it may be possible to create modified firmware for existing 
accelerators that would require occasional authorization from the manufacturer or a regulator in 
order for the accelerator to continue operating [11], [12], [13]. By combining this with 
verification software (discussed in next subsection), it could be possible to structure guarantees 

4 Although there are some security risks with this because a sophisticated actor may be able to spoof PCIe 
reads that have to physically route through multiple components. As another potential limitation, the 
current implementation of confidential computing blocks direct memory access from third party devices, 
which may have to be modified to support this use case (this might have to be done by Nvidia anyways 
to support efficient multi-node confidential computing). 
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about future usage without making hardware changes. I.e., receiving updated licenses 
permitting accelerator usage could be contingent on auditors having received evidence that 
ongoing accelerator usage met the guarantees.  
 
While firmware with Secure Boot can be more challenging to circumvent than software, it is not 
completely resistant to physical attacks. The most common of these attacks is to modify or 
replace the firmware, then apply a voltage glitch at the exact time during Secure Boot when the 
cryptographic signature is being checked5 [14]. For devices without protections against voltage 
glitching, this can cause the signature check to incorrectly pass, allowing the use of 
unauthenticated firmware. 
 
Accelerator designs are generally proprietary and Secure Boot requires firmware changes to be 
signed, so firmware updates would likely require substantial assistance from chip designers. 
Several different manufacturers make components that are on each accelerator, so this would 
not necessarily require assistance from the primary accelerator designer. 

Software Modifications 

The most straightforward strategy for third-parties to execute guarantee logic is to create 
software that runs on the CPUs that are responsible for managing the accelerators. Verification 
of the software that is run can be provided by Trusted Execution Environments (TEEs) [15], 
which use a hardware root of trust to provide difficult-to-fake evidence that the computing 
environment is configured as claimed. Mithril Security [16] and EQTY Lab [17] are currently 
working on strategies like this with the goal of providing a credible record of how a model was 
trained. EQTY’s whitepaper describes their approach in more detail, but at a high level, 
hardware security keys from the CPU and GPU are used to sign a record of the software initially 
loaded on the device, and a session key that signs any data or code that is later loaded for 
training. If an auditor is provided with detailed logs containing all of the software and data 
used, these signatures provide evidence that the software was executed as claimed in a specific 
computing environment. The signatures are difficult to fake because the hardware keys are 
stored in secure hardware memory.  
 
At the time of writing, Nvidia has released an early-access implementation of Confidential 
Computing (based on a TEE managed by the host CPU). The early access implementation 
supports a single node with AMD or Intel CPUs, but does not yet support multi-node or Grace 
CPUs (which limits the possibility for immediate widespread deployment). Nvidia’s 
Confidential Computing implementation doesn't currently claim to be secure against 
sophisticated physical tampering. Additionally, security is one of many sometimes conflicting 
priorities for high-performance CPUs, and significant non-invasive TEE vulnerabilities are 
sometimes discovered [19], [20]. 

5 There are also common defenses against fault injection attacks, like repeating important steps several 
times in series or in parallel to be able to detect inconsistencies.  
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Using a TEE makes it more difficult to falsify workload records, but does not prevent developers 
from using different software without any guarantees built in. For this reason, software-based 
solutions could enable verification about how hardware has been used, but would not be able to 
enforce that the hardware cannot be used in guarantee-breaking ways. 
 
TEE-based proof of training could be implemented in the near-term by sharing workload logs 
with auditors so they can manually check that the workload is compliant. More advanced 
designs may be able to automate this verification process so that AI model details do not have to 
be revealed. These automated checks could be done in a few ways, including: 1) providing 
developers with an API for model development that blocks non-compliant workloads 2) 
inferring workload characteristics by scanning code and gathering usage data 3) allowing 
developers to make specific claims about why their workload is compliant, and more narrowly 
verifying these claims. We explore these options in more detail in General-Purpose Guarantees. 
If the workload passes the check, the session key can be used to sign a certificate stating that the 
model passed without needing to reveal additional details. Progress on automated guarantee 
checks in software would likely translate to hardware-based solutions if the same workload 
information is available. With a lower barrier to entry, this makes TEE-based software a 
promising development environment for automated guarantee checks that are eventually 
intended to run on dedicated hardware.  
 
Overall, TEE-backed software for workload verification is relatively fast to deploy, but probably 
not secure against sophisticated actors if they have unrestricted physical access. This limited 
security may be sufficient for domestic regulation, where it could be difficult to hide major 
efforts to attack verification mechanisms. In international contexts, TEE-backed software could 
provide verification capabilities while more trusted hardware is developed. This could be made 
more secure if combined with tamper evidence, national intelligence agencies searching for 
circumvention attempts, and additional sensors collecting measurements to corroborate claims. 
 

Accelerator Measurements 

 
Several data sources could be used to verify workload guarantees, with different sources 
enabling different types of guarantees. The following table lists potential data sources and their 
respective advantages. 
 

Accelerator 
Memory (HBM) 

Direct memory access would provide visibility into workload state. This 
access could enable verification of claims about model architecture and 
facilitate snapshots of accelerator state for auditing. 

12 

http://flexheg.com/report-1
http://flexheg.com/report-3


Flexible Hardware-Enabled Guarantees | Part I | Part II | Part III 
 

Accelerator 
Instructions 

If the accelerator is trusted to execute instructions, monitoring the kernels 
sent to the accelerator could enable analysis of workload characteristics. 
One limitation  

Network Traffic  For distributed workloads, monitoring inter-accelerator communication 
could provide important information about the overall computation being 
performed. This could also be useful for guarantees about the network 
configuration.  

Performance 
Counters 

Hardware performance counters could provide metrics such as FLOP 
counts, memory access patterns, and interconnect utilization. 
 

Power Usage Power consumption monitoring offers a data source that is difficult to 
falsify without physical modifications. Power signatures could help 
identify workload types and detect anomalous computation patterns. 
Additionally, power measurements could serve as a cross-validation 
mechanism to verify consistency with other reported metrics. An existing 
FlexHEG prototype uses high resolution power measurements. 

 
Data sources that are consistent across different accelerator types are preferable, as they reduce  
the amount of customization needed for each hardware platform. Using multiple independent 
data sources could improve the robustness of guarantees, since attackers would need to falsify 
all sources to avoid detection. The availability of these measurements depends on how the 
Guarantee Processor connects to the accelerator, while their trustworthiness is determined by 
whether the measurement occurs within the Secure Enclosure and how much it relies on 
components that are vulnerable to attack or difficult to audit. As discussed in the Interlock 
section, placing the Guarantee Processor on a critical data path for accelerator usage is one 
option to improve the trustworthiness of measurements. 
 
 

FlexHEG Hardware Components 

In this report, we mainly focus on flexHEG implementations that use a Guarantee Processor to 
collect accelerator data and perform guarantee checks, and a Secure Enclosure to protect the 
guarantees from being circumvented with physical tampering. The Guarantee Processor and 
Secure Enclosure are intended to function separately from each other to make the design and 
deployment process simpler, and also because in some scenarios it may be important for 
separate parties to design and manufacture these components. This section analyses 
requirements and tradeoffs for the Guarantee Processor and Secure Enclosure. 
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Guarantee Processor  

With an on-device Guarantee Processor, checks can be done locally in a privacy-preserving way 
where sensitive data does not need to leave the device. The Guarantee Processor could simply 
provide a cryptographically signed certificate saying that the guarantee has been met, which the 
device owner could use as credible proof if they choose to. Additionally, a dedicated guarantee 
processor can be much more auditable than a full accelerator system, because it can be smaller, 
simpler, less performance sensitive, and would be possible to open source without revealing 
trade secrets. This is especially advantageous for being able to add it to untrusted accelerators.  
 
As previously discussed, it is important that the Guarantee Processor have robust access to 
accelerator measurements. In addition, the guarantee processor ideally: 

●​ Is performant enough to execute the guarantee calculations discussed in 
General-purpose Guarantees. For example, it would be useful for the Guarantee 
Processor to be able to double check the work of one Streaming Multiprocessor (SM) on 
a Blackwell chip, which would require roughly 1/192 the computational power of a 
Blackwell chip (because they have 192 SMs) 

●​ Is secure against cyber attacks that might attempt to make use of flaws in the 
implementation. 

●​ Is secure against physical attacks that might make it through the secure enclosure 
●​ Is able to perform necessary cryptographic algorithms, and can do so without revealing 

information via side channels like timing or power. A special case of this is when the 
Guarantee Processor is responsible for efficiently encrypting the data stream, as 
discussed for the Interlock Cryptography Hardware. Public key cryptography is also 
needed for verifying the authenticity of updates and for signing certificates about which 
guarantees have been met. This public key cryptography is ideally quantum secure (e.g 
zeroRISC’s work for Secure Boot [22]) 

●​ Is auditable by third parties that might not trust the designers or manufacturers  
●​ Is possible to update if and only if authorized by the required parties (see Guarantee 

Update Process). 
●​ Has access to a reliable real-time clock for time-dependent guarantees. 
●​ Has access to a secure random number generator.  

 
There are several existing processor IP blocks that could be used to satisfy at least a minimal 
version of these requirements, including a range of TPM cryptoprocessors [21]. As an example 
of a related (although closed-source and obfuscated) processor, the Intel Management Engine is 
included on many Intel CPUs for features like anti-theft prevention and capability licensing [22]. 
There are also open-source alternatives [23], [24], [25]. 
 
To increase trust that backdoors have not been added to the Guarantee Processor design or 
manufacturing process, some options are: 

14 

http://flexheg.com/report-1
http://flexheg.com/report-3


Flexible Hardware-Enabled Guarantees | Part I | Part II | Part III 
 

●​ Open-sourcing the guarantee processor design and guarantee logic, which could then be 
analyzed and compared with physical scans of randomly selected chips. 

●​ Using FPGAs to execute some or all of the guarantee logic, because they can have their 
configurations publicly audited, might be easier to check for physical inconsistencies 
because of their more uniform structure, and can use variants of configurations with 
equivalent logic to make many hardware trojans impractical [26]. 

●​ Sourcing multiple guarantee processors from different manufacturers6 and running the 
same instructions on all of them before checking their outputs for consistency on-device 
(this approach is similar to the Lock-Step, which is used to provide fault tolerance in 
functional safety designs [27]). With three guarantee processors, they could detect 
disagreements and use ⅔ voting to choose which action to take.  

 
The guarantee processor should be able to defend against voltage glitching and similar attacks 
[28]. There are also manufacturing techniques that would probably make tampering harder if an 
attacker is able to circumvent the secure enclosure (e.g., putting the guarantee processor near 
sensitive or fragile components like tamper sensors or interconnect channels). The FIPS-140-3 
certification measures the security of similar hardware security modules, and a similar 
certification process could potentially be used for the Guarantee Processor. 
 
A dedicated Guarantee Processor could be added to future accelerators as a standalone chiplet, 
or as a part of another die. Alternatively, for a retrofittable solution, it could be added to existing 
accelerators as a plug-in device (e.g. using a PCIe slot that can be configured to read from HBM 
with Direct Memory Access (DMA) [9]). 
 
As mentioned in the Firmware Modifications section, several components on existing 
accelerators already have general-purpose processors that could be updated with manufacturer 
assistance. Repurposing existing components would make deployment much easier, but may 
require compromising on some of the previous requirements. Some options for components to 
repurpose are analyzed in the table below. 
 

Processor(s) 
on AI chip 

AI chips often have reprogrammable processors directly on the main die. The 
designs are generally proprietary, but these processors are likely used to 
handle tasks related to general chip management, security and data 
processing. Nvidia reportedly has 10-40 cores on each GPU that are based on 
the open-source RISC-V architecture [29]. Some of these RISC-V cores power 
the GPU System Processor, which is responsible for communication with the 
CPU kernel driver, and “has full access to everything in the GPU, including 
access to the memory controllers”. Security logic on these microcontrollers 
appears to be formally verified [30]. 
 

6 Although this may increase the risk of a single compromised guarantee processor being used to 
sabotage chip usage. 
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Processors on AI chips are especially promising for implementing guarantees 
because they have direct access to the chip state, and being on the same die 
makes them more difficult to tamper with.  

High 
bandwidth 
memory 

High bandwidth memory (HBM)  is used in AI accelerators to store 
workload state (e.g. model weights and gradients). Currently HBM doesn't 
have significant (or potentially any) on-chip reprogrammable computing 
ability, but major HBM designers (e.g. Samsung and HK-Synx) are attempting 
to add it. HBM-PIM (Processor In Memory) and HBM-PNM (Processor Near 
Memory) are two proposed designs that would allow some accelerator 
computations to be performed without leaving the HBM block, which could 
improve efficiency. 

If on-die processors were added to future HBM chiplets, they would be a 
promising option for implementing flexHEG logic because: 

●​ They have direct access to workload state 
●​ HBM is difficult to manufacture and is an important part of all leading 

accelerators 
●​ They would be simpler and more transferable between accelerator 

types than many other components in the accelerator system 
●​ They could take snapshots of memory 
●​ They could randomly check accuracy of a fraction of computations 

and data transmissions to verify that other untrusted hardware is 
acting as claimed 

Network 
interface 
controller 

Network interface controllers are used to handle communication between 
each accelerator and the scale-out network. Modern NICs like Nvidia's 
ConnectX-8 have programmable compute capabilities for "in-network" 
processing and hardware for inline cryptography, while being able to process 
up to 800Gb/s (100GB/s) of data. NICs are an important part of datacenter 
security because they can encrypt data that leaves each node, protecting data 
in transit from being read or modified. 
 
NICs can directly observe the data sent through them to the broader network. 
They can also use Direct Memory Access (DMA) to read the contents of HBM.  

The NIC's architecture is typically simpler than a CPU, which can reduce its 
attack surface, and its position at the interface between the network and 
compute node creates a natural security boundary. Amazon's Nitro system 
leverages this approach [31], using NICs as hardware-backed security 
boundaries to isolate virtual machines by offloading security-sensitive 
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operations. Other companies implement similar security strategies with 
NICs, though with less public documentation. 

NICs are well situated to observe workloads that involve many accelerators 
because they sit on the main data path for communication between 
accelerators across nodes. This strategic position, combined with the ability to 
swap out the NIC with one made by a different manufacturer (as Amazon is 
doing with their NVL72 systems [32]), makes NICs a strong candidate for 
implementing flexHEG logic.  

Datacenter 
Secure 
Control 
Module 

Datacenter Secure Control Module (DC-SCM) is a standard for a module 
used to perform server management and provide security functionality [33], 
[34]. NVL72 is mostly compatible with the DC-SCM standard (the form factor 
is slightly smaller but the electrical interfaces are the same7). 
 
DC-SCM is plugged in via PCIe rather than built directly into the 
motherboard like typical baseboard management controllers (BMCs). This 
allows reuse of components across different motherboards, and enables data 
center operators to replace the module without replacing the entire 
motherboard (e.g., if a hardware update is needed for security reasons). 
DC-SCM might be a relatively simpler option for implementing flexHEG 
logic because: 

●​ It is less critical for accelerator performance, so might be more feasible 
to modify without disruption 

●​ It would be relatively easy to replace with a dedicated flexHEG 
version 

●​ They already have access to information about the board like power 
usage 

●​ As a PCIe device, it may be possible to configure read access of HBM 
One downside of DC-SCM modules, however, is that they are not on the 
main data path, so data readings may be easier for an attacker to spoof. 

 
 
Other components on or connected to accelerators within data centers could potentially be 
repurposed for flexHEG, including network components like switches. It is also an option to 
repurpose multiple components, which could provide defense in depth and more 
comprehensive information (although for simplicity, we will not discuss this option more here). 
To make auditing and design simpler and faster, it may make sense for a submodule within a 
component to be used for flexHEG, rather than the entire component. 
 

7 “We also developed a new, denser DC-SCM (Data Center Secure Control Module) design that’s 10% 
smaller than the current standard” [35]. 
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In the Interlock section, we analyze a specific design where data entering and leaving the 
accelerator must pass through the Guarantee Processor (or rather a buffer that it has direct 
access to).  

Secure Enclosure 

A secure enclosure is used to protect flexHEG devices from physical tampering. This is needed, 
because otherwise an adversary could modify hardware to circumvent guarantees, or use 
measurements to exfiltrate confidential data. Depending on the threat model (see Appendix B 
for more on threat models), there are different ways to dissuade tampering, including using a 
tamper evident enclosure, or a tamper-responsive enclosure that triggers disablement of the 
accelerator. Another option that is a mixture of tamper evident and tamper responsive is to 
incorporate a Physically Unclonable Function (PUF) in the enclosure, where tampering with the 
enclosure would corrupt the measurements used to derive a secret PUF key.  Without the PUF 
key, adversaries would not be able to sign attestation certificates or decrypt important data. The 
secure enclosure boundary could potentially contain a single chip, a single accelerator PCB, 
several accelerators within a tray, many accelerators within a rack, or even larger configurations. 
The choice of where to put the security boundary has several tradeoffs between security, 
maintenance, and time-to-readiness. It also influences where flexHEG logic can be securely 
executed, and where encryption is needed (e.g. if chip-level security boundary, ideally want to 
encrypt data leaving the chip).  In this section, we summarize publicly available information on 
hardware security that is relevant for AI accelerators and flexHEG threat model, and also how 
trade offs here influence the overall flexHEG design. 
 
Secure enclosures have been used for decades to defend cryptographic coprocessors and other 
chips from physical tampering [36], [37]. The FIPS-140 certification process [38][12] measures the 
physical defenses of tamper-responsive enclosures for cryptographic coprocessors. At the time 
of this writing, there are four devices with the maximum FIPS-140 rating (level 4) that are sold 
by IBM [14] and by Private Machines [15]; neither of the systems have much public information 
about their tamper resistant security features, likely because security-by-obscurity is commonly 
practiced in hardware security, which is more offense-dominant than cryptographic security. 
The IBM and Private Machines devices have not been publicly broken8, although it is unclear 
how secure they would be against state-backed actors. There are also rumors of private US 
government projects on hardware security that may have even more advanced defensive 
measures. Hardware security from these related domains could potentially be translated to 
work with AI accelerators if it can be modified to accommodate the accelerator form factor(s) 
and to handle high heat dissipation. 
 
Tamper-evident enclosures could be useful in scenarios where accelerators can be inspected and 
where misuse does not need to be prevented immediately. Building tamper-evident enclosures 

8 Though an older IBM cryptographic coprocessor was broken [39]. 
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could potentially be faster and simpler than tamper-responsive enclosures (they probably do 
not require a battery or self-destruct mechanism). Techniques used for monitoring nuclear 
materials, like tamper evident seals and 24-7 video cameras could be fairly simple to adapt to 
this use case (and data centers typically already have these cameras). Some of the older 
tamper-evidence techniques may not be perfectly secure, like the cold-war seals that can 
apparently be broken [40]. However, this type of tampering would probably be difficult to 
perform on a large fraction of accelerators in a data center without being detected. The security 
could also be improved by layering different types of tamper resistance and tamper evident 
defenses.  
 
Physically unclonable functions (PUFs) are usually used to provide persistent secret information 
that cannot be passively measured with scanning equipment. PUFs do this by taking 
measurements of unique hardware characteristics and using them to generate a secret key. This 
is normally done with components like SRAM PUFs [41], but the same principle could be used 
for a secure enclosure. For example, the PUF could be based on electrical properties of a 
conductive mesh that is embedded in the enclosure wall.  
 
An advantage PUFs have over active sensing is that they don't require a battery. However there 
are also a few limitations to PUFs:  

●​ The PUF key generation procedure might take seconds, so might be too slow to respond 
to some attacks without also pairing active sensing (closer to millisecond response time)  

●​ To use PUFs to prevent future usage of accelerators that have been tampered with, the 
destruction of the secret key must prevent decrypting data that the accelerator cannot 
operate without. This could potentially be the firmware or tuned coefficients for the 
accelerator, which would make it difficult for adversaries to use the accelerator if they do 
not have a functioning version of the firmware or tuning procedure. Against 
sophisticated adversaries, this may not be sufficient though, because they would only 
need to acquire this firmware once to unlock all of their devices, and this firmware could 
potentially be leaked by a single rogue employee that works for the accelerator 
manufacturer.  

●​ While PUFs make passive scanning of secret information difficult, when that secret 
information is read in order to recreate the secret key, that information is transmitted on 
data buses and stored in registers. These registers and buses could potentially be read 
with microprobing or laser voltage probing. One strategy used to mitigate this is using a 
"strong PUF" that has enough entropy to generate many keys, so that the same 
information doesn't need to be read repeatedly. However, being able to generate many 
different keys does not immediately solve the problem, because the secret information 
on device needs to be encrypted and decrypted with a particular key, so to do this locally 
would require multiple reads of the same key. A different defense that enclosure PUFs 
could use against active scanning of registers is to design the physical enclosure in such 
a way that signal wires and registers are not possible to access for scanning without first 
destroying the PUF.  
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Tamper responsive enclosures use active sensing to detect if the enclosure has been breached 
and then to trigger an appropriate response. One approach for active sensing is to measure the 
capacitance of a serpentine-patterned conductor embedded around the enclosure [9]. Similarly, 
the resistance of a conductor mesh can also be measured [10]. If the mesh is disrupted, then the 
measurements will change, alerting the tamper-detection system. Measurements of the radio 
response function within an enclosure could also be used [11] (although detection tests for the 
referenced prototype have so far only been done with metallic probes). Additional sensors can 
be used to prevent more sophisticated attacks by measuring for radiation, voltage glitching, 
lasers, temperature, and the rate of temperature change. To avoid having a single point of 
failure that could be targeted by an attacker, a distributed network of sensors could be used to 
independently trigger the tamper-response mechanism.  
 
The appropriate tamper response mechanism depends on the threat model. If the goal is to 
prevent confidential data from being stolen, it is important to delete all data and secret keys 
when tampering is detected. Additionally, it is also important to communicate that this 
tampering has happened, so that the same accelerator is not used again later after it may have 
been compromised. One option for this is for each accelerator to frequently send an "all OK" 
signal, and to investigate accelerators that do not send this signal on schedule. 
 
If the goal is to prevent tampering being used to circumvent guarantees about future accelerator 
usage, tampering should trigger permanent disablement of the accelerator before the guarantees 
can be disabled. There are multiple approaches that could be used to disable an accelerator. 
Some options are: 
 

●​ Capacitors for voltage-based destruction: Large capacitors could be charged during 
normal operation and then discharged to apply excessive voltage to critical components 
of the chip when tampering is detected. This voltage surge would exceed the chip's 
electrical tolerance, causing permanent damage to vulnerable circuit elements. This 
approach could be implemented with relatively simple circuit additions to existing 
designs and doesn't require changes to the main accelerator die, making it a good option 
for retrofitting.  

●​ Embedded antifuse bits: Modern chips can include one-time programmable (OTP) 
memory cells based on antifuse technology. Unlike regular fuses that start connected and 
can be blown to disconnect, antifuses start disconnected and can be permanently 
connected by applying a high voltage. By embedding thousands or millions of these bits 
throughout the accelerator chip and designing the chip to require specific antifuse 
configurations to function properly, tampering detection could trigger widespread 
antifuse activation that would render the chip permanently inoperable. This approach is 
highly effective but requires deep integration during chip design and manufacturing, 
making it unsuitable for retrofitting to existing accelerators. 
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●​ Nanothermite-based destruction: A more experimental approach involves embedding 
reactive materials like nanothermite (a material that can produce a rapid exothermic 
reaction) on the chip surface. If tampering is detected, the nanothermite could be ignited 
by a small electrical pulse, generating intense localized heat that would physically 
destroy critical chip components.  

 
To ensure system integrity over the lifetime of the device, a battery inside or outside of the 
enclosure can be used so that the sensors continue to operate even if external power is 
disconnected.  
 
Cooling is necessary for AI accelerators, which have to dissipate up to 1200W of heat per chip 
(Nvidia B200). Most existing data centres use fans to air cool chips, but some next generation 
accelerator racks like the NVL72 require direct-to-chip liquid cooling in order to achieve the 
intended compute density (trays with air cooling are taller than trays with direct to chip liquid 
cooling). High compute density allows for shorter interconnect cables, which reduces 
communication latency and cabling cost. Secure enclosures can ideally be made compatible with 
both air and direct to chip liquid cooling (and potentially two phase direct to chip cooling which 
is speculated to be the next advancement [42]).  
 
To permit cooling, the secure enclosure boundary can either be sandwiched between the chip 
face and cooling pad, or it can contain both the chip and the cooling pad. If it is sandwiched 
beneath the cooling pad, it has to be very thin and very thermally conductive. Alternatively, if it 
is further away from the chip face, the secure enclosure has to allow heat to flow through it. For 
air cooled units, this would probably have to allow airflow to pass through the boundary. The 
security risk of having holes in the enclosure could potentially be reduced by making the air 
pass through a metalized foam that doesn't permit a direct line of sight into the enclosure, and 
whose particular geometry is sensed by radio. For direct to chip liquid cooling one option is to 
have the liquid tubing pass through the enclosure boundary, potentially with a similar 
defensive layer that allows liquid though. Alternatively, the liquid tubing within the enclosure 
could form a closed loop, and heat could be exchanged at the enclosure boundary with a 
liquid-liquid heat exchanger. 
 
Larger enclosures that contain more accelerators are likely faster to design and deploy because 
they do not need to be as tightly integrated with the specific accelerators (as an extreme 
example, the "secure enclosure" could be an entire datacenter). Ease of deployment is further 
improved if the secure enclosure matches standard dimensions for a server tray or rack, like the 
open sourced MGX rack standard used by NVL72 [43]. However, enclosing multiple 
accelerators has potential downsides:  

●​ The more accelerators in each secure enclosure, the higher the probability that one of 
them will fail or require maintenance, and for security reasons it would be preferable to 
not be able to open the enclosure after it has been closed 
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●​ An attacker would only need to disable one enclosure to access multiple GPUs, and a 
larger surface area has more room for flaws 

 
To put many accelerators within a single secure enclosure that cannot be opened would be 
feasible if hardware failure requiring maintenance or replacement was extremely rare. 
Alternatively, the number of accelerators within the secure enclosure could be over-provisioned, 
so that the combined system could still function after a few hardware failures (as is done with 
solid state drive memory regions). The feasibility of over-provisioning depends on the software 
and network architecture. This is simpler for hub-and-spoke models like NVL72 than for 
network grid layouts like Google’s TPUs, where a single failed device would cause non-trivial 
issues with network routing. 
 
As previously mentioned, the security of the guarantee processor and the measurements it 
makes is dependent on the secure enclosure boundary. A Guarantee Processor on the accelerator 
chip that makes chip-level measurements could potentially be protected with a chip-scale secure 
enclosure. This has the advantage that it can be included early in the supply chain. It would also 
likely require advanced tooling (like a focused ion beam machine) to physically tamper with 
logic on the chip. A defense in depth approach is probably useful here, because the addition of a 
larger secure enclosure could make it more difficult for attackers to get tooling into place to 
tamper with the chip enclosure. 
 
To summarize, there are many options for adding secure enclosures to accelerators, with 
different tradeoffs. Based on the public literature, it is very difficult to circumvent the best 
secure enclosures. However, nation-state attackers can likely compromise the best current secure 
enclosures, but it is difficult to estimate what the marginal per-device cost of circumvention 
would be. 
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Interlock-Based FlexHEG Design 

 
Figure 4: Interlock-based flexHEG design 
 

As previously discussed, integrating flexHEG with core accelerator functionality would make it 
harder for attackers to spoof data or circumvent guarantees. One promising approach is to 
position a component on the main data path. We refer to a flexHEG component sitting on the 
data path as an "Interlock." 

A high-level visualization of this design is shown in Figure 4. While the figure shows a single 
accelerator with a single interlock in a secure enclosure, multiple accelerators could 
alternatively be held within each secure enclosure. As the only path for data and instructions to 
enter the accelerator, the interlock would be able to robustly monitor and/or control this flow. 

The interlock can use encryption to protect the data that leaves the secure enclosure from being 
read or modified by an attacker. By controlling the key exchange process used to initialize 
encrypted channels between nodes, the Guarantee Processor would have clear visibility into the 
cluster configuration. 

Understanding data flows between accelerators is very important for making high-level 
guarantees about distributed workflows (as each accelerator in isolation may appear to be doing 
standard matrix multiplications). Using an Interlock is a relatively straightforward way for the 
guarantee processor to see how data is moving between accelerators. Although, if needed, there 
are other options to check the authenticity of incoming data, such as comparing the logs of data 
in memory between accelerators. 
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A downside of having the Interlock on the main data path is that performance requirements are 
higher, and it may be required to upgrade to meet future performance requirements (compared 
to a passive measurement device that doesn't need to be modified as frequently). The ideal 
implementation would have direct access to a simple part of the data path, like a buffer, and 
direct control over crypto hardware, but not have to implement all of the logic and performance 
optimization. An easier to implement/scale version would be for the interlock to not perform 
the inline encryption, and just be able to read the buffer. 

A benefit of the interlock design is that it can treat the accelerator as a black box, with less need 
to understand or trust internals, which could speed up adaptation to novel accelerators and 
require less information sharing from accelerator designers. Since the Interlock already sits on a 
data pathway, it could likely also separately use DMA to read internal accelerator data. 

The Interlock could be implemented in several ways, including 1) as an IP block within the 
accelerator die, 2) as a chiplet sitting near the accelerator die, 3) as a part of high bandwidth 
memory (HBM), or 4) as a separate component that operates as a network relay or switch. The 
space constraints for putting the Interlock on-die or near the accelerator chip and HBM are more 
demanding because this physical layout affects memory latency. 

Relatedly, the requirements for Interlock latency and throughput are more demanding the closer 
the interlock is on the data path to the accelerator die, because accelerators typically access 
HBM much more frequently than the cluster network (e.g. H100s expect ~3TB/s of HBM data 
transfer, compared to 900GB/s NVLink, or 128GB/s PCIe to route to the broader network). 

Repurposing the Network Interface Controller  

A promising option for a retrofittable Interlock is repurposing or replacing the Network 
Interface Controller (NIC), which as previously discussed is responsible for communicating 
with the scale-out network. FlexHEG designs that are external to accelerators are easier to 
physically retrofit to novel accelerator types, or integrate later in an accelerator design cycle. 

This approach draws inspiration from existing security architectures like Amazon's Nitro 
system [31], which uses the NIC as a hardware-backed security boundary to isolate virtual 
machines by offloading security-sensitive operations to their Nitro Card. 

A potential challenge with updating the NIC is that hyperscalers already have protocols for 
configuring clusters within their data centers, and custom hardware for network management 
and encryption. It would likely be possible but costly for them to replace these technologies 
with a flexHEG version. 
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Encrypted Cluster Formation 

FlexHEG systems need to be able to securely communicate with each other so that they can 
coordinate around guarantees, and so that data in transit can’t be read by adversaries. To enable 
this, flexHEG systems could follow the encrypted cluster formation protocol described in the 
table below.  This protocol combines public key cryptography for initial authorization with 
efficient symmetric encryption for ongoing data transfer, allowing clusters to be formed securely 
while maintaining the high-bandwidth, low-latency communication needed for distributed AI 
workloads. 
 

1.​ The (directed) network graph of possible communication pairs is initially declared 
(with unique device IDs for each endpoint). 

2.​ The guarantee processor at each node parses this graph to assemble a list of the IDs of 
all nodes that it needs to send data to. 

3.​ Two options for endpoint key lookup: 
a.​ Logging/approval version: Each guarantee processor sends a request to an 

external governance system, asking for permission to send data to the list of 
endpoints, and optionally for any bandwidth or time limits. The governance 
system sends an approval certificate and the public keys of the requested 
endpoints. 

b.​ Decentralized version: each guarantee processor checks a local lookup table9 
for the public keys of the requested endpoints. 

4.​ Each guarantee processor randomly generates a session key for AES-GCM encryption 
and loads it into its output-path crypto engine. 

5.​ Each guarantee processor encrypts its session key with the public keys of approved 
endpoints, then sends this data to those endpoints. 

6.​ All guarantee processors decrypt the session keys of source nodes and optionally 
check for approval to communicate with these nodes (this could be the same certificate 
from step 3a). 

7.​ The approved session keys are loaded into input-path crypto engines to decrypt 
incoming data. 

 
Besides protecting communication channels, this protocol could optionally provide mechanisms 
for governance of cluster configurations. If option 3a is chosen instead of 3b, all flexHEG devices 
could be required to report cluster configurations before starting a workload, which could be a 
useful level of transparency for international coordination. Routing network approval through a 

9 This lookup table would typically be provided by the accelerator manufacturer (Nvidia supports this 
now for air gapped checks of device attestation [44]). For multilateral use cases it would be helpful 
to have a multilaterally maintained service. The easiest way to do this would probably be to have 
each party that monitors the flexHEG manufacturing process publicly share their own table. Third 
parties could check all tables for consistency.  
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more centralized service would also reduce the amount of public-key cryptography that needs 
to be done, which may become significant if direct all-to-all communication is needed in very 
large clusters. 
 
To allow network switches to run computations on transmitted data (e.g. SHARP [45]), network 
switches would have to also be set up as flexHEG nodes. They could then decrypt the data, run 
any computations, then encrypt and transmit the resulting data.  
 
AI workloads frequently involve one-to-many communication, which is why this protocol uses 
a single symmetric key for each source node (instead of a unique symmetric key for each node 
pair). A limitation of this is that if one flexHEG node is compromised, the source keys it has 
could be used to read or spoof transmissions from those source nodes. One way to mitigate the 
risk of spoofing would be to occasionally sign the hash of previously transmitted hashes using 
the private key rather than the symmetric key (although care needs to be taken to handle 
dropped packets sensibly). 

Cryptography Hardware  

Cryptography that provides confidentiality could allow the guarantee processor to choose 
specific accelerators that are allowed to read the outgoing data. Similarly, cryptography that 
verifies message authenticity could allow guarantee processors to trust that a particular message 
has come from another guarantee processor.  
 
There are several potential applications of encrypted interconnect, including: 

●​ Protect weights from being exfiltrated by an attacker snooping on interconnect; 
●​ Constrain a training run to only use a certain, limited number of GPUs (similar to Fixed 

Set [11]) by only allowing specific GPUs to decrypt the information; 
●​ Verify authenticity of metadata describing the compute graph, which could enable 

verification that training data were approved by a regulator or that model parameters 
have not exceeded an operation limit. 

 
A common algorithm used to provide Authenticated Encryption with Associated Data [46] is 
AES-GCM [47]. AES-GCM operates in counter mode, which means encryption of a single data 
stream can be efficiently parallelized because each block is encrypted separately. A security risk 
with AES-GCM is that the nonce cannot be re-used even once, as this could allow attackers to 
infer the secret key [48]. The cipher for AES-GCM can be precomputed prior to seeing the data, 
and only needs to be XOR’d with the data stream to compute the encrypted output stream. This 
allows specialized hardware to perform the AES portion of the encryption with close to 0 
latency, and then perform the follow-up GCM calculation for authenticity and send this result 
separately [49]. 
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Order-of-magnitude estimate for fraction of compute needed for 256 bit AES-GCM encryption 
on an H100: 

●​ H100 capable of 1.98 *10^15 int8 ops per second; 
●​ Interconnect bandwidth of 900*10^9 bytes per second; 
●​ ~ 50 operations per byte for AES256; 
●​ AES-256 applies roughly 14 rounds with 4 operations each to all input data, so roughly 

50 operations per byte. Authentication with GCM typically takes half the time as the 
AES component  , so we will approximate as roughly 75 operations per byte in total 
(although exact performance depends a lot on implementation details, and could 
maybe be accelerated with dedicated hardware) 

●​ So to encrypt all NVLink traffic would require 900*10^9 * 75/(1.98 *10^15) = ~ 3% of 
computing power / energy / board space; 

●​ To encrypt all HBM would require 3000*10^9 * 75/(1.98 *10^15) = ~11% of power; 
●​ Or to encrypt all PCIe traffic would be 3000*10^9 * 75/(1.98 *10^15) = ~0.5%; 

 
To perform the cryptography for authentication and confidentiality, the interlock ideally has a 
hardware-accelerated crypto engine that supports high bandwidth with minimal latency. An 
additional benefit of cryptography hardware is that it can be specifically designed to minimize 
information leakage via side channels that may be exposed by software implementations. Such 
cryptography engines are common in devices like solid state drives or network cards that need 
to perform inline encryption (although typically they don’t need to support as much bandwidth 
as is being considered here). Alternatively, this cryptography could potentially be performed by 
modifying GPU kernels to encrypt data after reading and before writing to HBM,  however safe 
transport of keys would need to be solved.  
 
The NVIDIA H100 can provide encryption of PCIe traffic to support single-GPU confidential 
computing, although this specific implementation imposes additional latency [50]. Nvidia has 
suggested that NVLink may be possible to encrypt in Blackwell GPUs, although no public 
details are available on this at the time of writing.  
 
Inline cryptography hardware is common in modern Network Interface Cards [51], which offer 
up to 800Gb/s and typically connect accelerators to the frontend or backend network [52]. 
Modern NICs also typically have general-purpose processors, which are discussed more in the 
section, A Specific Retrofittable flexHEG Design. 
 
If the interlock does not have enough computational power to encrypt all traffic that passes 
through it, partial authenticity could be provided at a small fraction of the cost using 
pseudo-randomized authenticity checks, as described in Appendix C. 
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General-Purpose Workload Guarantees 

This section discusses approaches to implementing general-purpose verification of guarantees, 
ranging from simple logging to automated verification of complex guarantees. The feasibility of 
implementing and securing these approaches for guarantee checking depends on the flexHEG 
hardware, as discussed previously. The strategies discussed here are presented at a high level 
because some details depend on the specific type of guarantee. In FLOP Counting, we discuss a 
more specific design for multi-accelerator guarantees about total FLOPs. 
 
We analyze four potential approaches to verifying claims about computations: 

1.​ Transparent logging and auditing: The system maintains detailed logs of all operations, 
which can be manually audited. This approach is suitable when sharing detailed 
information about computations is acceptable. 

2.​ Automated scanning of unmodified workloads: The system attempts to automatically 
classify workloads as compliant or non-compliant by analyzing code, usage patterns, 
and other observable properties. 

3.​ Compute graph declaration: Developers make specific claims about their computations, 
either through upfront static declarations or dynamic operation-by-operation 
declarations, which the system can verify. The system compiles these declarations into a 
verified compute graph, which can be more robustly parsed for particular workload 
guarantees. 

4.​ Framework-based verification: The hardware is only made accessible through a 
framework with a limited set of APIs. These APIs either structurally constrain 
workloads to follow guarantees, or make it much simpler to automatically check 
guarantees (e.g. by checking parameters that have to be entered into the API). 

Transparent Logging and Auditing 

For use cases where detailed auditing is feasible and acceptable from a privacy perspective, 
approaches based on logging and snapshots can be effective, as described by Shavit [53]. To 
accomplish this, memory snapshots could be taken at random points in time, with the hashes of 
these snapshots stored securely in hardware. Then during auditing, the developer would 
provide full memory snapshots that match the hashes, along with the code and input data that 
explain the progression between snapshots. Optionally, other information about the system 
could also be logged to assist auditing, like the kernels executed or network communication 
patterns. 
  
While relatively straightforward to implement (compared to fully automated guarantee checks), 
this approach requires sharing potentially sensitive information about computations. Manual 
audits might take a lot of time from skilled engineers to ensure that workloads were not subtly 
designed to hide non-compliance, especially if the architectures used are substantially different 
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between developers. This time requirement could potentially be reduced with tooling to assist 
the manual process. 
 
Alternatively, the logs could be stored locally and not exported unless they need to be checked 
after an incident (somewhat like a “black box” on airplanes). Or as a potential in-between, 
regulators could get access to logs after a set delay so that developers are not as worried about 
leaking cutting-edge secrets. 

Automated Local Scanning of Unmodified Workloads 

For use cases requiring privacy-preserving verification, it is likely possible to automatically 
verify certain properties of workloads without requiring any modifications from the developer. 
This approach is most feasible for guarantees about properties that can be directly measured or 
inferred from observable system behavior, such as: 

●​ Total clock cycles used 
●​ Power consumption  
●​ Number of accelerators involved 
●​ Basic communication patterns between accelerators 
●​ Memory usage patterns 

 
Developers could additionally be required to provide the Guarantee Processor with the 
accelerator kernels or other detailed information about the workload. Even if it is not possible to 
directly verify the authenticity of some data, it may be challenging for an adversary to keep 
complex claims consistent across multiple data sources. It may be possible to use this 
combination of data sources to predict more abstract characteristics about the overall workload 
(e.g. is it doing reinforcement learning). 
 
Since this type of check is based on general patterns associated with certain workloads and not 
exact logic, it could suffer from false positives or false negatives depending on how the 
classification is tuned. If there is a false positive, a developer may not want to reveal their true 
workload to prove compliance. A potential solution might be for the developer to provide a 
minimal example of a false positive on a different compliant workload. To find false negatives in 
the classification algorithm, overt adversaries could iteratively modify their noncompliant 
workloads until they are classified as compliant. In some situations, the reduced efficiency these 
modifications impose on non-compliant workloads may be worthwhile, even if the check is not 
fully robust.  
 
If an adversary does not want to be detected breaking any guarantees, and does not know the 
details of the workload check, it could be much more challenging for them to falsely mimic a 
compliant workload without risking detection. This difficulty depends on the classification logic 
being kept secret, which would be challenging to do against state adversaries, and would not be 
feasible for some types of agreements that rely on openness of the mechanism. One strategy that 
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may dissuade covert adversaries would be to periodically update the classifier, and then parse 
older usage logs with the updated classifier to see if any past breaches had been missed. 
 
Another option for performing automated checks is for the check to itself be done by a large 
language model (LLM) that is run locally. Running the LLM locally would provide credible 
evidence to the developer that additional information was not being exfiltrated - this could 
either be done on the same hardware that is being monitored, or on additional secure hardware 
dedicated for this purpose. This LLM could review kernel logs and usage statistics, and check 
for more sophisticated attempts to camouflage non-compliant workloads. As AI capabilities 
improve, the LLM could be updated to more intelligently parse past and future logs (again, 
covert adversaries would have to risk that future updates would not discover any previous 
deception).  
 
Empirical work is needed to create a dataset of compliant/noncompliant workloads and 
develop classification algorithms. Red teaming and usability testing of candidate classifiers 
would provide more information about real-world usefulness.  

Compute Graph Declaration  

This approach requires developers to make detailed claims about the operations that their 
workloads are composed of, which the flexHEG system then automatically verifies for 
compliance with high-level guarantees. These claims would be composed of atomic operations 
acting on chunks of data, which would include basic mathematical operations (e.g. matrix 
multiplication), and data transfer (potentially between nodes). The set of ordered operations 
that are performed can be constructed as a compute graph10 that describes all steps in the chain 
of events that create each chunk of data. 
 
These claims can be made in two ways: 

1.​ Static declaration: The developer provides upfront a complete description of the 
intended computation, including all data transfers and computational operations.  

2.​ Dynamic declaration: The developer declares each atomic operation (either a data 
transfer or computation) as it is performed. The system then verifies that each atomic 
claim is actually executed as expected and logs the series of operations that occur.  

 
With static declarations, the flexHEG system could analyze the entire workload for compliance 
before execution begins, and then verify that what is executed matches the claimed workload. 
With dynamic declarations, the flexHEG system could periodically check during execution that 
the recently logged compute graph is in compliance with workload level claims.  
 

10 See pytorch and Nvidia docs for examples of current compute graph implementations in 
frontier AI workloads [54], [55], [56]. 
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Static declarations would be suitable for workloads that don’t change the control flow based on 
data, like performing a fixed number of inference steps with a dense neural network. However, 
data dependent control flow like the data routing for sparse mixture of experts cannot be 
described with a standard static computation graph upfront [57]. 
 
There are limits on what can be decided about a program using static analysis, for example the 
halting problem, or more generally Rice’s Theorem [58]. It is unclear how relevant these limits 
are for guarantees about accelerator workloads. If the compute graph is dynamically 
constructed and checked for guarantees this is not an issue because branch conditions do not 
need to be represented (instead logging which mathematical operations were actually 
performed). 
 
Existing libraries like PyTorch or CUDA graphs could be modified to provide compute graph 
declaration functionality, especially static compute graph declarations that these libraries 
already support. Alternatively, a description language specifically for flexHEG compute graphs 
could be developed along with tools to translate accelerator kernels into this language. This 
approach could use solutions from existing programming languages that have already 
addressed similar challenges in describing mathematical operations on data (and the problem is 
simpler than building a programming language because how the operation is performed does 
not need to be described) 
 
Accelerator workloads typically involve simple mathematical operations on large tensors, 
making it natural for the flexHEG compute graph description to be based on atomic operations 
applied to blocks of memory. One approach would be to allow developers to describe these 
atomic operations using general-purpose code (such as C or similar languages), though this 
would require careful consideration of security implications. Alternatively, a library of 
pre-defined, checkable atomic operations could be developed. The number of operations 
needed is relatively limited since accelerators are specialized hardware - for example Google's 
TPUs which primarily support tensor operations, arithmetic, and a few transcendental functions 
[59]. Each operation could include type descriptions specifying input and output formats (such 
as tensor dimensions and numeric representation). 
 
Either the CPU or accelerator could be responsible for communicating declarations about the 
intended workload to the Guarantee Processor, either beforehand with static declarations, or as 
kernels are sent to the accelerator with dynamic declaration.  
 
To increase trust in the declared compute graph, the guarantee processor can ideally 
independently verify that the operations are performed as claimed. If the accelerator is trusted 
enough to follow the input kernel instructions, the kernels could directly be parsed and 
accepted as truth for atomic computations (assuming the guarantee processor can robustly 
monitor which kernel instructions are received by the accelerator). Alternatively, a 
general-purpose way to verify each atomic computation is to use the guarantee processor to 
randomly re-compute a portion of each result and verify that it matches the value that was 
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returned. Data transfer between accelerators or nodes could be checked by the Interlock using 
authenticated cryptography, as described in Encrypted Cluster Formation. 
 
The timing of these declarations and checks would need to be carefully designed to avoid 
vulnerabilities from mistimed checks, or inefficiencies imposed on the model developer by 
prohibiting types of asynchronous operations that are difficult to check. Additionally, any 
non-accessible or untrusted internal accelerator state that influences the computation result 
would make performing these checks challenging.  
 
Because accelerators operate in a highly parallelized, single instruction multiple data mode, it 
may be possible to store the description of the kernels with very little data. As a rough estimate, 
each accelerator may process 10 kernels per second, and each kernel can be described with 1KB, 
leading to 10KB/s data created per accelerator. Unfortunately, locally storing a copy of the 
whole compute graph on each flexHEG system does not scale well with cluster size. For 
example, if there were 100k accelerators casually contributing to one workload, each would 
contribute 10KB/s to the overall instruction log, causing the compute graph to grow by 1GB 
each second. With 1M accelerators, this would be 10GB/s, which exceeds SSD write speeds, and 
would almost instantly fill up the RAM available on a single device.  
 
For most types of guarantee checks on large clusters, the compute graph would have to be 
analysed in a distributed way. How this is implemented would depend on the type of 
guarantee, but might involve computations that could more compactly summarize the 
guarantee-relevant parts of the compute graph. These distributed guarantee checks could 
potentially be done periodically, for example each time a snapshot of the weights is saved. 
 
For a few specific types of guarantees, the necessary information from the compute graph can be 
summarized efficiently on the fly, so that each flexHEG system can locally store the relevant 
global state even with large clusters. In FLOP Counting, we describe one way to implement this 
by locally keeping a running tally of the FLOPs performed by every accelerator in the cluster 
that could have casually influenced the data. 

Framework-Based Verification 

Another approach to verification is to develop a framework that constrains how developers can 
interact with the hardware. Such frameworks can enable verification in two ways: 

1.​ Structural Constraints: The framework's API design could only provide limited 
functionality, or even enforce guarantees directly: 

○​ The framework could simply not provide APIs for certain operations, making 
some non-compliant workloads impossible to implement (e.g. requiring static 
declarations of computations, therefore preventing data-dependent looping) 

○​ Resource allocation could be handled entirely by the framework, ensuring 
compliance with hardware usage rules 
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2.​ Built-in Verification: When developers must work through framework APIs, verification 
logic can be built directly into these interfaces: 

○​ Developers might need to declare model architecture parameters upfront, 
making properties like model size or layer count trivial to verify 

 
Simply not providing the ability to execute non-compliant workloads would avoid false 
positives and make guarantee checking more robust, though it requires developers to adapt 
their workflows to the framework's constraints. Additionally, this framework would ideally be 
compatible with multiple kinds of hardware platforms. Instead of starting from scratch, it might 
be easier to adapt existing open source tools like PyTorch to build in guarantees, although this 
comes with the risk of vulnerabilities in code that was not originally intended to be secure. 
 
 
 

Guarantee Example: Multi-Accelerator FLOP Counting 

This section provides more specific implementation details than the general-purpose workload 
monitoring strategies discussed in the previous section. The number of operations used to 
create an AI model serves as a proxy for that model's capabilities [Leonie] and has become an 
important component of European and American AI regulation [EU AI act, diffusion rule]. 
While FLOPs can be tallied through classical accounting approaches—such as requiring 
developers to declare their number of accelerators and document their high-level tasks over 
time [60]—these methods have potential vulnerabilities. Standard accounting practices might 
fail to detect deliberate misrepresentation of FLOPs. For example, a developer that has their 
own data center could falsely claim that 80% of their compute is dedicated to inference while 
20% handles training, when in reality the entire facility is being used for a large training run. In 
scenarios where compute resources must be tightly networked, such misrepresentation could be 
detectable by cloud providers through node connection monitoring or hardware-backed 
network reporting (as discussed in Encrypted Cluster Formation). However, developers could 
still circumvent restrictions by claiming to run several unrelated training runs sequentially that 
are actually components of a single large training run. 
 
As a more robust option, the Interlock could be used to tally all inputs that could have causally 
contributed to output data. Below, we sketch a potential implementation of this for 
multi-accelerator workloads. We assume that the Interlock is able to keep an up-to-date log of 
the FLOPs performed by the local accelerator after it is powered on. This could be done using 
performance counters, by scanning executed kernel code, approximating based on power usage, 
or with other methods.  
 
The number of FLOPs that could have contributed to an output is the sum of FLOPs performed 
on the local accelerator and the FLOPs performed by other accelerators that generated data that 
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was used by the local accelerator. To prevent FLOP “laundering” we must also account for data 
that is entered into the cluster system from outside sources.  
 
Typical accelerator workloads involve external data, which could be static data used for 
training, or interactive data from users. Without protections, results from a previous or parallel 
workload could be hidden in the “external data”, falsifying the total FLOP count. This can be 
protected against in a few ways: 1) the external data could require an audited explanation, or 2) 
could be delayed to make it inconvenient to bridge parallel or sequential workloads. Small 
amounts of data could be allowed to enter the system without an explanation or significant 
delay, but the amount of unexplained data would have to be logged so that it does not 
accumulate to a large amount over time.  
 
To provide an audited explanation of external data, data that enters the system could be hashed. 
The hash and amount of the data could be included as a new entry in the FLOP log. Later, it 
could be verified that this hash matches a hash provided by an auditor attesting that they 
inspected that specific data to check that it was human-generated (perhaps by randomly 
sampling fractions of the data and verifying sources). 
 
To enforce a large delay, a similar mechanism could be used. Instead of an auditor claiming that 
the data is authentic, they could simply claim to have seen that hash a certain amount of time 
before (or instead of an auditor, the presence of that hash in the history of a public blockchain 
could be used). For preventing the sequential combination of large workloads, this delay might 
have to be on the order of months. E.g. if the flexHEG system allows workloads up to 10^26 
FLOPs and then halts, a delay of 3 months would substantially slow attempts to restart a “new” 
workload from a checkpoint of the previous workload. For this example, to reach 10^27 FLOPs 
sequentially would require 10 restarts, taking at least 30 months. For preventing unauthorized 
parallel combination of workloads, potentially even seconds of latency could be sufficient to 
meaningfully slow circumvention attempts [61]. This delay could be added by the Interlock 
itself if it has a large enough buffer to store all external data for a few seconds.  
 
The amount of information that needs to be tracked about each accelerator is small, so this 
calculation can be done efficiently on-the-fly without requiring a whole-cluster summarization 
step that could be complicated, especially if it has to deal with accelerators unexpectedly going 
offline. For each source, 1 bit could specify whether it is unknown data or another accelerator. 
Each accelerator session ID could be a 16 byte UUID, with another 12 bytes providing more than 
enough space to store the local FLOPs as an integer. If it is unknown data, 32 bytes could store 
the hash.  Overall, this would be roughly 30MB to store the FLOP log for 1M unique sources 
(e.g. a very large cluster). An additional 30MB is not significant compared to the GB-scale data 
that is typically transmitted between accelerators. If necessary, some accelerators could be 
excluded from the local log depending on the network topology (e.g. intermediate nodes could 
summarize groups of FLOP counts).  
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On-the-fly distributed FLOP counting: 
 

1.​ At initialization, each accelerator is power-cycled (turned off then back on) to delete 
any stored data11. 

2.​ The Interlock generates a new session ID for itself and sets the FLOP counter for this 
session ID to 0. 

3.​ Data sent to other accelerators is sent with a prefix that contains the Interlock’s entire 
FLOP log. 

4.​ When an Interlock parses input data, it reads the prefix, adds any new sources to its 
local log, and for each source it updates the FLOP value if the new value is higher 

 
The Interlock needs to store the FLOP count of every source individually and not just a single 
running tally to avoid double counting12 . With this data flow, each Interlock doesn’t necessarily 
have the current FLOP count of every other accelerator, but it does have the highest FLOP count 
that could have casually influenced the local data13.  
 
Some care has to be taken if the output data is streamed, and is not all staged in the Interlock at 
the time the prefix FLOP log is sent. This is because the count could be misrepresented if 
additional FLOPs could influence the output after the prefix has been generated but before all 
the data has been sent. To prevent this, the prefix log could be modified to include an additional 
buffer accounting for additional local FLOPs that might occur during streaming. If the local 
count exceeds this pre-specified buffer, then the output stream has to be halted. Any incoming 
data could be staged in the Interlock until the output stream has completed so it couldn’t 
influence the output stream. This additional buffer quantity added to local FLOPs would only 
introduce a fixed error and not an accumulating error, because the FLOP value is tracked as the 
maximum and not summed on other accelerators.  
 
Data that is exported from the workload can include a signed certificate describing the detailed 
FLOP log. The detailed log is useful so that multiple chunks of data can be combined later 
without double counting the FLOPs (because the logs show overlapping source IDs, the FLOPs 
can be summed without double counting, and then combined into a single value as necessary). 

13 With the potential exception of work done towards messages that are not sent, e.g., failed attempts at 
generating synthetic reasoning traces. 

12 E.g. doing a computation with 2000 FLOPs, sending it to another accelerator that does 1000 FLOPs, then 
that other accelerator sends it back, saying that it took 3000 FLOPs. With a single FLOP counter, it would 
partially double count this as 5000 FLOPs, instead of the true 3000 FLOPs 

11 It should be turned off for long enough so that data in RAM is not retained 
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Guarantee Update Process 

For the guarantee logic to be flexible, it must be possible to update it on deployed devices. 
However, to prevent attackers from disabling the guarantees, the guarantee processor should 
only accept updates that were authorized by the appropriate parties. On consumer devices, this 
authorized update process is typically implemented using public key cryptography, where the 
new firmware must be cryptographically signed using the manufacturer’s private key for it to 
be accepted by the device [62]. A similar solution can be used for flexHEG, with a few 
modifications: 
 

●​ The update process could require that the update (or lack of update) be multilaterally 
approved by k of n parties, so that no single actor could unilaterally impose excessive 
restrictions (as discussed for an international context in Part III). The pseudocode in 
algorithm 1 shows how multi-party update approval could be implemented. 

●​ Different amounts of authorization (e.g. number of stakeholder signatures) could be 
required for different types of updates. For example, whole-system updates might 
require a supermajority, while changes to a parameter file within a specified range of 
values could require a smaller majority approval. 

●​ An update could change how future updates are accepted. This could change which 
parties are able to approve updates or how many votes are needed for different types of 
updates. 

●​ Signatures will ideally use quantum resistant public key cryptography [63] so that 
security is not broken by advances in quantum computing (which could plausibly be 
sped up with AI advancements).  
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def verify_firmware_update(firmware_binary: bytes,  
                         signatures: list[tuple[str, bytes]],  # [(signer_id, signature)] 
                         authorized_signers: dict[str, bytes],  # {signer_id: public_key} 
                         k: int,  # Required number of valid signatures 
                          ) -> bool: 
    # Calculate firmware hash 
    firmware_hash = hashlib.sha256(firmware_binary).digest() 
     
    # Count valid signatures from unique signers 
    valid_signers = set() 
    for signer_id, signature in signatures: 
        # Skip if not an authorized signer 
        if signer_id not in authorized_signers: 
            continue 
             
        # Skip duplicate signers 
        if signer_id in valid_signers: 
            continue 
             
        # Verify signature using signer's public key 
        public_key = authorized_signers[signer_id] 
        if verify_signature(firmware_hash, signature, public_key): 
            valid_signers.add(signer_id) 
             
        # Return early if we have enough valid signatures 
        if len(valid_signers) >= k: 
            return True 
             
    return False 

Algorithm 1: Pseudocode for k of n update authorization process. Updates could themselves 
change the future authorization process by either changing the authorization logic, or the list 
specifying expected signers. Authorization logic can include more (or less) complex rules if 
necessary. 
 
 

It may be useful to be able to provide evidence about which updates were and were not signed 
by particular stakeholders. Updates that were signed are trivial to prove (by showing the 
signature), but showing that an update was not signed would probably require 
hardware-backed evidence from all devices that contain the private key.  
 

The simplest update deployment strategy is to publish cryptographically signed updates and 
allow device operators to download and install them if/when they choose. If the flexHEG 
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system is only being used to provide credible attestation about how accelerators are used, 
voluntary updates would be sufficient (because the attestation would communicate which set of 
guarantees it is for). However, if the flexHEG system needs to guarantee compliance with the 
updated rules, voluntary updates would be insufficient, because device operators could simply 
not install the updated guarantees. 
 
An alternative approach that could be used to enforce updates is to require that accelerators 
periodically receive a license in order to continue operating [11], [12], [13], and for each license 
to specify a minimum allowed version number. The guarantee processor could prevent usage of 
the accelerator if it has operated for too long (as measured by a secure real-time clock or cycle 
counter14) without receiving a license, or if the minimum version number is greater than the 
current version number. The licenses and updates can be delivered by any channel, so no 
internet connection is required for this approach (which could be important for chips that are 
air-gapped for security).  
 
The length of time that a license is valid affects the latency at which new updates must be 
loaded (e.g., if devices need a new license every three months, they could ignore an update for 
that much time). This pushes in the direction of making the license renewal time shorter so that 
guarantee changes are not overly delayed. However, with very frequent license renewals, the 
burden on operators becomes more significant. One approach that could be used to resolve this 
is to use data diodes [64], which could be used to transmit licenses without any risk of data 
leaving via the same path.   
 
It may be useful to be able to commit to not deploying certain types of updates in the future. To 
make specific commitments would require unmodifiable structure in the guarantee logic. Being 
unable to deploy some types of updates would (by design) reduce the ability to flexibly enforce 
future rules. One way to implement this is to provide a minimal guarantee version (See 
discussion of “baseline rulesets” in Parts I and III) that partially throttles accelerator 
performance, but cannot be revoked. Choosing a minimal level is not simple, because too high 
would limit the potential for governance via the mechanism, and too low would be almost the 
same as not having a minimal version at all. A major downside of providing a fallback version 
or other restrictions on future rules is that if security vulnerabilities are found in the fallback 
version they would not be possible to patch (without cooperation from the users).  
 
Choices for the guarantee update process in the context of international agreements are 
analyzed in greater detail in Part III of this report series.  

Future Work  

As discussed throughout this report, there are several concrete paths to developing flexHEG 
capabilities. In this section, we outline promising directions for a major third-party R&D effort. 

14 If using a cycle counter, there is a risk that the operator secretly does not use the chip to save up usage 
time. This risk could potentially be mitigated by requiring usage reports. 
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Assistance from accelerator designers could dramatically speed up this work by providing 
information for seamless integration or by directly contributing to the R&D efforts. 

The NIC appears to be the most promising component that third parties could modify to enable 
secure, trusted, and flexible guarantees. IP blocks, code, and algorithms originally developed for 
a NIC-based solution could later be adapted for Guarantee Processors in other locations if 
necessary. One caveat to this is that deploying a flexHEG-enabled component to major data 
centers would require substantial cooperation from the entities that normally manage those 
components (e.g., accelerator designers or data center operators). Performance-critical 
components like the accelerator chip, HBM, or NIC would likely require more extensive 
collaboration compared to more peripheral components like the BMC or DC-SCM. If minimal 
deployment support is expected, a pragmatic approach would focus R&D on minimally 
disruptive solutions, though this trades off against security and capabilities. 

Among the guarantee-checking strategies described earlier (in General-Purpose Guarantees), 
developing dynamic compute graph logging with automated guarantee checking would be the 
most significant breakthrough. Dynamic compute graph checks would offer greater privacy 
preservation than manual auditing, more robust verification than opportunistic classification, 
and more flexibility than structured hardware access. However, it requires significant research 
before deployment, making it well-suited for a major research project. For these reasons we 
recommend focusing ambitious research efforts on dynamic compute graph logging, while 
pursuing faster deployments using alternative approaches. 

Below, we outline a roadmap for how a major third-party effort ($10M-$100M) could develop a 
working version of flexHEG that is compatible with leading accelerators. This roadmap focuses 
on developing a tamper-evident enclosure, NIC-based interlock, and automated guarantee 
checking using dynamically logged compute graphs. 
 
We divide this roadmap into four mostly independent projects, followed by integration work to 
combine the results into a frontier deployment. Each project depends on the success of previous 
projects, but many parts can be developed in parallel. It may make sense to start each of these 
projects at a modest size and then quickly scale projects that need more attention in order to be 
viable, or that could best make use of additional effort. 
 
These project suggestions are intended as initial recommendations, with the expectation of 
changing course as more information is gathered (where possible trying to avoid changes that 
would affect high level goals or the other subprojects). If a major roadblock is discovered, it may 
make sense to switch to an easier target design, for example by using the same Guarantee 
Processor and Secure Enclosure, but using opportunistic classification instead of dynamic 
compute graph logging. If there is enough research capacity, it may make sense to reduce 
technical risks by exploring these alternative designs in parallel.  
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Project 1: Tamper-Evident Secure Enclosure 

Summary: Develop a best-effort solution for tamper-evident physical security for AI 
accelerators that could be deployed within 1-3 years. 

Related Sections: Secure Enclosure 

Deliverables: 

●​ Specific recommendations for applying existing technology to create a tamper-evident 
enclosure 

●​ Evidence that the proposed design is secure and not overly disruptive to data center 
operations, ideally with red-team testing 

Primary skill sets: Hardware Engineering, Hardware Security, Data center operations 

Time Estimate: 2-10 person-years to adapt existing tamper evidence methods to data center 
accelerators (and more if there are promising directions for advancing the frontier of hardware 
security) 

Details: The aim of this project is to provide a minimal level of tamper evidence that could be 
retrofitted to existing data centers to enable credible guarantees. Tamper resistance would be 
valuable to develop simultaneously, though it is a lower priority as it will likely be developed 
commercially to protect model weights. 

Results should be actionable within 1-3 years, so reliance on unproven technology should be 
minimized. If promising approaches to highly secure tamper-responsive enclosures emerge that 
could defend against overt nation-state adversaries, this work could be separated into a distinct 
project (governments with access to classified information on hardware security might be better 
positioned to assess feasibility). 

The project should begin by thoroughly investigating current physical security practices and 
maintenance requirements for AI data centers. Next, the team should survey options for tamper 
evidence, potentially including tamper-evident seals, locks, and camera systems. Insights could 
be drawn from technologies used in nuclear non-proliferation treaties (noting that some seals 
have reportedly been compromised [65]). 

Promising options should be tested under conditions approximating real-world deployment, 
with maintenance protocols also addressed. This may include strategies to minimize 
maintenance requirements or structured access protocols to prevent maintenance operations 
from being used to disguise tampering. Ideally, the complete proposed solution would undergo 
external red-team security assessment and usability testing. 
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Project 2: Trustworthy Guarantee Processor 

Summary: Analyze existing NICs for use as a Guarantee Processor, and develop a trustworthy, 
open-source Guarantee Processor IP block. 

Related Sections: Guarantee Processor 

Requires: Physical security provided by Project 1 

Primary Skill Sets: Chip design, chip analysis 

Deliverables: 

●​ Recommendation on ways to use existing processors in a secure and trusted way 
●​ Open-source design for a Guarantee Processor IP block that could be integrated into 

other hardware 

Time Estimate: 

●​ 2-4 person-years to analyze existing options 
●​ 10-40 person-years to design the IP block 

Details: As discussed previously (Guarantee Processor), a Guarantee Processor should ideally 
incorporate the following features to ensure security, auditability, and the ability to execute logic 
required for Projects 3 and 4: 

●​ FPGA and/or general-purpose processor capability 
●​ Sufficient processing power to keep up with 1 of the 192 Streaming Multiprocessors on  a 

Blackwell chip (though less could be workable) 
●​ Secure boot with rollback protection 
●​ Hardware for public key cryptography (ideally quantum-secure) 
●​ Lockstep processor execution capability for security 
●​ Secure random number generation 
●​ Glitch protection 
●​ Sufficient non-volatile memory to store months of logs locally 
●​ Secure non-volatile memory to detect modifications of partially untrusted non-volatile 

memory 

Additionally, the following are NIC-specific requirements: 

●​ Hardware for AES-GCM (ideally 800Gb/s or 1600Gb/s, or a clear path to scaling to this 
rate)—alternatively, the ability to control external AES-GCM hardware in a secure and 
trustworthy way 
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●​ Buffer on the data path (large enough for the Guarantee Processor to read a small 
fraction of data as it passes through) 

●​ DMA capability to read accelerator memory 

The project should first assess the security, auditability, and performance of existing 
high-performance NICs, especially those already deployed with accelerators, such as NVIDIA's 
ConnectX and Amazon's Nitro. If possible, plans should be developed to quickly repurpose 
these NICs for flexHEG applications with support from the NIC designers. 

Next, high-level plans should be developed for integrating a Guarantee Processor IP block into 
future leading NIC designs. This could begin with a thorough survey of existing open-source IP 
blocks that could serve as a foundation, such as OpenTitan or similar projects. 

The team would then design an IP block with the features required for flexHEG. Beyond the 
performance and security requirements listed above, the IP block should be trustworthy to third 
parties not involved in its design or manufacturing (assuming they can conduct random 
hardware inspections). 

The IP block should be manufactured and tested to verify readiness for real-world deployment. 
If possible, this testing should include security red-teaming and trustworthiness auditing. 

Ideally, this IP block would be designed to be compatible with future NICs, other accelerator 
components, or as an additional chiplet on accelerator boards. The IP block should be 
open-sourced to enable auditing and integration by multiple manufacturers. 

Project 3: Accurate Compute Graph 

Summary: Implement dynamic compute graph logging, including hardware-backed verification 
methods. 

Related Sections: Compute Graph Declaration 

Requires: Trustworthy Guarantee Processor provided by Project 2 

Primary skill sets: Applied Mathematics, Firmware Engineering 

Prototyping platform: Reprogrammable logic on standard smartNIC (like ConnectX) and/or 
CPU 

Deliverables: 

●​ Language to concretely and concisely describe multi-accelerator workloads, including 
computations performed on memory blocks and data movement between accelerators 
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●​ Robust methods to verify accuracy of each atomic operation in a workload (e.g., random 
recomputation for calculations, in-line cryptography or memory log comparison for data 
transfers) 

Time Estimate: 

●​ ~20 person-years to create an extensible description language and checking system 
●​ ~4 person-years to develop tooling to automatically translate accelerator kernels to the 

workload description language 

Details: The project should begin with empirical work to understand which operations must be 
supported and the precise timing of kernel execution and HBM data modifications across 
multiple accelerator types and relevant workloads. This data could be collected by running 
typical workloads and logging detailed information about accelerator kernels and HBM state. 

The team would then develop a representation for workloads that is specific enough to verify 
hardware execution of claimed operations, flexible enough to accommodate potential uses, but 
not so flexible that analysis of these logs is intractable. This could build on structure from 
existing frameworks like PyTorch [66], JAX [67], TensorFlow [68], StableHLO [69], Aesara [70], 
MIL [71], IREE [72], ONNX [73], LiteRT [74], TOSA [75] or WebNN [76]. 

The next step would be creating a protocol for the CPU or accelerator to make real-time claims 
about how each memory block will be updated. These declarations could be shared with the 
flexHEG NIC using DMA. This protocol could be prototyped using user-programmable logic on 
an existing smartNIC or FPGA attached to a leading accelerator (with security and auditability 
requirements skipped until later). 

The team would then design verification checks for each operation to confirm it occurred as 
claimed. With a NIC Interlock, network communication could be directly verified. DMA could 
be used to read portions of HBM data, enabling recomputation of a sample of output values. 
Important threat modeling questions to address include: 

●​ If DMA could be falsified but network communications are accurate, how difficult 
would it be for an attacker to falsify the overall compute graph? 

●​ How does this change if an attacker is willing to dynamically modify a portion of their 
workload to appear compliant? 

●​ Can checks be designed so that the complexity for attackers increases with each 
operation, rather than requiring a single patch of their data? 

●​ Could supplementary measurements like accelerator kernels, power usage, or timing 
corroborate claims? 

●​ Are there ways to increase confidence in PCIe reads of HBM? 
●​ Would placing the Guarantee Processor on HBM or the accelerator chip (instead of the 

NIC) significantly improve the defense model? 
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Tools should be developed to translate accelerator kernels to properly formatted workload 
descriptions, potentially leveraging existing software like StableHLO. 

Finally, the compute graph construction process should be tested with typical workloads to 
verify functionality. 

Project 4: Automated Guarantee Checking 

Summary: Develop classifiers to robustly verify policy-relevant guarantees using computation 
graphs from multiple Guarantee Processors. 

Related Sections: Compute Graph Declaration, FlexHEG Part I Appendix B: Governance 
Mechanisms Enabled by FlexHEGs 

Requires: Accurate compute graph provided by Project 3, trustworthy Guarantee Processor 
provided by Project 2 (or another similarly secure and trustworthy processor) 

Primary Skill Set: Computer Science / Mathematics 

Prototyping platform: Mathematical modeling and/or software (on any platform) 

Deliverable: Algorithms that can process workload logs from multiple Guarantee Processors 
and robustly classify whether the combined workload meets policy-relevant guarantees. 

Time Estimate: 

●​ 4 person-years for basic guarantees 
●​ 10+ person-years for exploration of more sophisticated guarantees 

Details: The objective of this project is to automatically process Guarantee Processor logs 
describing compute graphs to determine whether workloads meet policy-relevant guarantees. If 
the workload log format is not finalized when this project begins (likely if Project 3 starts at the 
same time), work on automated checks could begin using similar specifications, such as PyTorch 
compute graphs. 

The first step would be creating a protocol to assemble or process compute graphs from 
multiple Guarantee Processors in a scalable way that can tolerate potential hardware failures. 

Next, the team would develop robust guarantee checks, prioritizing development based on 
policy relevance and technical feasibility, likely focusing on simpler checks to start. 

Development could begin with classifiers for lower-level properties (which should be relatively 
straightforward once the compute graph is constructed), such as: 
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●​ Number of linked accelerators 
●​ Number of FLOPs that contributed to an output 

The team could then develop higher-level guarantee checks, such as: 

●​ Whether gradient descent is occurring 
●​ Whether reinforcement learning is being performed 
●​ The length of particular LLM chains of thought 
●​ Whether evaluations were run properly 

Red-team testing should be used to assess the robustness of the automated checks developed. If 
there is time, the team should also analyze robustness against falsification of some operations in 
the compute graph. 

Integration and Deployment 

After completing the four projects, they should be combined into a full flexHEG system. 
Specifically: 

●​ The Guarantee Processor (and linked accelerator) from Project 2 should be protected by 
the Secure Enclosure from Project 1 

●​ The compute graph construction process from Project 3 should be executable on the 
Guarantee Processor from Project 2 

●​ The automated guarantee checking from Project 4 should be able to analyze compute 
graphs from Project 3 (and ideally run on the Guarantee Processor from Project 2, though 
a dedicated device could be used if necessary) 

●​ Typical frontier workloads should run efficiently on the combined system with minimal 
setup requirements 

Follow-up work should include security red-teaming, user experience testing, and developing 
standards to credibly assess trustworthiness and security of solutions from other parties. 
Standardizing hardware and logical interfaces would improve compatibility with novel 
accelerators. 

The work in these projects is non-trivial but likely feasible for a dedicated flexHEG accelerator 
project. The primary uncertainty is ease of integration on short notice with modern hardware 
and frontier workloads. If integration is straightforward, deployment could occur within 2-4 
years, either with a firmware update or by retrofitting flexHEG components. However, if 
integration is more challenging, deployment would have to wait for accelerator designers to 
include it themselves and release updated accelerators. An upside of deeply integrated flexHEG 
is that it could be significantly more secure and have access to more reliable data.  

Uncertainty about integration could be de-risked with more extensive investigation of: 
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●​ Maintenance frequency for AI accelerators and realistic reduction potential 
●​ Specific timing of accelerator instructions and memory changes to better understand the 

feasibility of the proposed claim-and-verify architecture for dynamic compute graph 
logging 

A successful third-party flexHEG project could demonstrate feasibility, resolve technical 
uncertainties (especially around automated guarantees), and serve as a foundation for ongoing 
industry development. Findings could inform firmware updates providing partial flexHEG 
functionality on already-deployed accelerators. 

Given the strategic importance of AI, the significant lead times required for hardware 
development, and the growing need for privacy-preserving verification mechanisms, 
accelerating the development of flexHEG capabilities now is important so that these solutions 
are ready if they are needed.  
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Appendix A: Background on Frontier AI Development 

and Hardware 

 
Figure 1: NVL72 rack, with 72 Blackwell accelerators, direct-to-chip liquid cooling, and 9 NVLink 
switches [77]. 
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This section provides a brief review of how frontier AI workloads are run on specialized 
accelerators in large data centers. FlexHEG designs that are minimally disruptive to these 
existing systems could be integrated more quickly.  
 
Most accelerators that are currently in use are designed by NVIDIA and manufactured by 
TSMC, although AMD, Google, Amazon, Intel  and Huawei have competing accelerator designs 
which some major AI developers claim are their primary drivers for AI training. Chinese AI 
firms currently use handicapped chips that comply with export controls, and likely also use 
cloud compute and smuggled chips [78]. Chinese manufacturers are attempting to develop 
semiconductor processes that are competitive with TSMC, although it is unclear how long this 
might take.  
 
Hyperscalers (Microsoft, Amazon, Google, etc.) have massive data centers for AI training and 
inference, and are currently building many more. According to Epoch AI, the total installed 
NVIDIA compute is increasing approximately 2.3x per year (Figure 2). Semianalysis predicts 
that NVIDIA Blackwell GPUs in an NVL72 configuration will be a major part of this ongoing 
buildout . To briefly summarize the Semianalysis report on NVL72, the layout essentially 
consists of one or two datacenter racks with direct-to-chip liquid cooling, enabling higher 
compute/power density compared to traditional air cooling. Each compute tray in the rack 
contains two GB200s (Figure 3), each comprising two Blackwell GPUs, a Grace CPU, two CX-7 
Network Interface Cards (NICs), and outgoing NVLink connections. These NVLink connections 
route to NVLink switches housed in a separate switch tray, providing high-bandwidth 
communication between every GPU in the NVL72. The CX-7 NICs connect to the backend 
datacenter network (either InfiniBand or Ethernet) via optical cables, allowing multiple NVL72 
racks to communicate with each other. A separate frontend network with a different set of 
network switches handles communication with the internet and networked memory (e.g., 
weight snapshots). Additionally, an out-of-band management network supports physical 
monitoring via a module called the baseboard management controller (BMC). 
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Figure 3: GB200 Bianca board layout (left, source: Semianalysis [52]) and NVL72 tray with two 
Bianca boards (right, source: HighYieldYT). 
 
Modern data centers increasingly use hardware security features and encrypted communication 
to protect sensitive workloads. For example, AWS encrypts network traffic between EC2 
instances using TLS [79]. Some hardware cryptographic modules are designed to be resistant to 
physical tampering and side channel attacks, and the FIPS-140 standard aims to certify the 
security of these crypto modules [38]. Intel, AMD, and ARM offer CPUs that can support a 
Trusted Execution Environment (TEE) [15], which provides hardware-backed assurances that 
the computing environment is configured as claimed. Similarly, NVIDIA has developed 
confidential computing capabilities for their GPUs, initially supporting single-GPU workloads 
with plans to extend this to multi-GPU scenarios [50].   
 
 
Frontier AI development in 2020-2024 has been dominated by massive pre training runs, where 
LLMs using the transformer architecture are trained on huge amounts of text [80]. As a typical 
example of frontier development, Meta's Llama 3 paper [81] describes their approach for 
training a dense 405B parameter model on 16,000 H100s. They state it "uses a standard, dense 
Transformer architecture" and appears to employ a fairly typical training procedure, although 
this is difficult to confirm since many frontier labs do not publish their training methodology. 
Notably, their training run experienced 466 interruptions over 54 days of training, and “78% of 
the unexpected interruptions [were] attributed to confirmed hardware issues.” Their workload 
parallelism configuration was chosen based on network bandwidth and latency between GPUs, 
and they attempted to overlap computation and communication. Meta and several other 
frontier AI developers use PyTorch for defining their AI training workload [66]. Pytorch allows 
developers to define a model, convert it to a computation graph, use automatic differentiation 
for the gradient calculation, and distribute the entire workload across many GPUs. The work 
done by individual GPUs in this distributed workload is described by CUDA kernels, which 
proprietary NVIDIA drivers convert to machine instructions. Pytorch distributed 
communication operations can use NVIDIA’s NCCL backend which can optimize GPU 
communication patterns [82]. 
 
Google trains their models using their proprietary TPU accelerators [83] (rather than Nvidia 
GPUs), and JAX [67] (rather than Pytorch). Their book on model scaling explains how to 
develop distributed training code that is optimized for their hardware [59]. Similarly, Hugging 
Face has a book on how to optimize distributed training to reduce compute, memory, and 
network bottlenecks [84]. 
 
As another example of frontier model development, the Chinese company Deepseek published 
on the training process for their Deepseek V3 model, including several model and infrastructure 
optimizations to overcome compute limitations [57]. Due to export controls, they were unable to 
purchase H100s, and instead used H800s which have about half the NVLink bandwidth. The 
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training run used 2048 H800s over 56 days (about 8x fewer GPUs than were used for LLama 3 
405B). They used sparse Mixture of Experts, which selects a subset of the network to route each 
token to at each layer. With this sparse architecture, only 37B parameters out of 671B total 
parameters are used for inference per token. They also use a mixed precision framework and 
carefully overlap computations with communication. Information on the software stack used to 
develop Deepseek V3 is not currently publicly available. 
 
OpenAI recently announced their o1 and o3 models, which achieved impressive benchmarks by 
scaling inference-time compute using chain of thought. Details about o1 and o3 architecture and 
training process have not been published, although there is speculation about synthetic data 
and reinforcement learning. It is currently unclear how much this will change the allocation of 
compute for AI development, and how important it will be to be able to make guarantees about 
workloads other than pre-training.  
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Appendix B: Threat Models 

FlexHEG systems aim to provide hardware-backed guarantees for AI accelerators, but these 
mechanisms face potential threats from actors attempting to circumvent the guarantees or 
misuse the systems. This appendix analyzes threat models relevant to different flexHEG 
deployment scenarios. 
 
Several types of attacks could be used for these purposes, including: 

1.​ Exploiting firmware vulnerabilities (e.g., buffer overflow attacks) 
2.​ Exploiting mispecification in the guarantee logic (e.g., causing workloads to be 

inaccurately classified) 
3.​ Physical tampering with components that enforce restrictions on chip usage, potentially 

using Fault Analysis tools to image the device and make targeted modifications (e.g., 
resetting a FLOP counter) 

4.​ Leveraging backdoors inserted during design or manufacturing processes 
5.​ Making secret modifications to cluster configurations (e.g., adding bridge devices to 

combine supposedly separate clusters) 
6.​ Attacking the infrastructure used to authorize flexHEG devices (e.g., stealing 

authorization keys) 
 
The plausibility and impact of these attack vectors vary significantly based on the use case and 
the adversary's capabilities and motivations. We analyze four scenarios: domestic oversight, 
international treaty verification, international treaty enforcement, defending AI system IP.  

Domestic Oversight 

In the context of domestic regulation, AI developers are considered covert adversaries, who 
may attempt to circumvent guarantees if they can do so without detection [12]. These 
developers either have physical access to accelerators at data centers that they manage, or access 
them remotely through a cloud provider.  Due to whistleblower risks, circumvention attempts 
would likely involve only a small number of trusted employees. If random inspections for 
tampering are conducted, any physical tampering would need to be either difficult to detect or 
limited to a small number of devices that could plausibly be reported as "lost" or otherwise 
unavailable for inspection. 
 
Commercial entities might attempt to circumvent domestic regulations by: 

1.​ Identifying or purchasing information about firmware vulnerabilities that offer plausible 
deniability if detected 

2.​ Performing limited physical tampering on a strategic subset of devices 
3.​ Exploiting ambiguities in guarantee logic specifications 
4.​ Implementing modifications to cluster configurations that evade detection mechanisms 
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The Volkswagen emission scandal is one of the larger known examples of this type of deception. 
In the Volkswagen case, dozens of employees were involved in technical modifications that 
allowed vehicles to incorrectly pass emissions testing. 

International Treaty Verification 

 
When flexHEG is deployed to verify compliance with international treaties, states themselves 
become potential adversaries. In this context, states are considered covert adversaries, as overt 
non-compliance would render verification systems unnecessary. 
 
State actors possess sophisticated capabilities and advanced tools for circumvention. The scale 
of covert operations could be considerably larger than in domestic scenarios, potentially 
involving hundreds of personnel with specialized expertise, as this aligns with their core 
national security competencies. 
 
A significant challenge in this scenario is that states subject to verification requirements may 
participate in the flexHEG design and manufacturing process. This participation creates 
opportunities to introduce subtle vulnerabilities, particularly in complex components that resist 
formal verification methods. For example, a state might influence secure enclosure designs to be 
vulnerable to specific types of laser attacks, or engineer interlock components with electrical 
coupling vulnerabilities that could be exploited under specific conditions. These types of 
vulnerabilities may be highly difficult to confidently protect against. 
 
Even with these sophisticated offensive capabilities, certain circumvention methods would still 
be constrained by intelligence operations, randomized inspections, and robust tamper-evident 
packaging systems. 

International Treaty Enforcement 

 
If FlexHEG is being used to enforce future adherence to certain rules, then the chip owner may 
be either a covert adversary as analyzed above, or an overt adversary in cases where a country 
decides to openly break their treaty commitments. 
 
In the case of overt non-compliance, a state might deploy thousands of technical experts to 
identify exploitable security flaws. Upon discovering vulnerabilities in the flexHEG logic, a state 
could potentially develop scalable methods to exploit these vulnerabilities across their entire 
accelerator fleet. Similarly, if hardware security vulnerabilities are identified, the state could 
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establish systematic processes to physically disable flexHEG mechanisms in multiple 
accelerators. 
 
The feasibility of scaling hardware-based attacks depends on several factors: the success rate of 
hardware modifications, equipment availability, and the time and cost requirements of each 
modification. The required scale of the operation depends on the objective of the 
attack—exfiltrating sensitive data might require compromising only a single device, while 
circumventing licensing restrictions might require modifying thousands or millions of 
accelerators. 
 
Beyond circumvention, there is also the risk that the flexHEG system itself could be used as an 
attack vector. In the international context, states might attempt to introduce backdoors or 
vulnerabilities that could enable sabotage of AI accelerators. This sabotage could manifest as 
overt disruption triggered by specific signals or timers, or as subtle manipulations designed to 
introduce unpredictable errors that impede development, similar to the approach used in the 
Stuxnet operation. 

Defensive Protection of AI Systems 

FlexHEG can serve defensive purposes beyond regulation and treaty compliance. In these 
scenarios, the adversaries are external actors attempting to compromise AI infrastructure or 
exfiltrate sensitive intellectual property such as model weights or architecture details. 
For these defensive applications, the security challenge differs fundamentally—the goal is to 
prevent unauthorized access to protected accelerators and data rather than preventing 
circumvention of usage restrictions. Even compromising a single device could potentially 
enable the exfiltration of valuable model weights. Such attacks might target inference 
datacenters or be executed by rogue employees within training facilities. 

How Secure is Secure Enough? 
It is not necessary for a flexHEG system to be absolutely secure against all possible attacks to 
serve its purpose effectively. Instead, the system should be secure enough that the cost of 
circumvention outweighs the benefits for most actors in most circumstances. 
 
This approach is consistent with existing security paradigms in international relations. For 
example, the Biological Weapons Convention between the Soviet Union and United States did 
not achieve perfect verification, but raised the cost of covert violations through impromptu 
inspections. Similarly, flexHEG would aim to make rule violations sufficiently costly and risky 
to deter most potential violators. 
 
The security of flexHEG could use two complementary strategies: 
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1.​ Technical measures: Tamper-evident enclosures, tamper-responsive self-disablement, 
cryptographic protocols for secure communication, and secure update mechanisms 

2.​ External verification: Intelligence capabilities, randomized physical inspections, and 
whistleblower incentives 

 
When evaluating whether flexHEG provides adequate security for a given application, 
policymakers should consider whether the system makes rule violations sufficiently difficult 
and detectable to alter the cost-benefit calculation for potential violators. 
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